

US011084865B2

(12) United States Patent

Furfine et al.

(54) VEGF ANTAGONIST FORMULATIONS SUITABLE FOR INTRAVITREAL ADMINISTRATION

- (71) Applicant: REGENERON PHARMACEUTICALS, INC.. Tarrytown, NY (US)
- (72) Inventors: Eric Furfine, Concord, MA (US);
 Daniel Dix, LaGrangeville, NY (US);
 Kenneth Graham, Pleasant Valley, NY (US);
 Kelly Frye, Mendham, NJ (US)
- (73) Assignce: REGENERON PHARMACEUTICALS, INC.. Tarrytown, NY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 16/739,559
- (22) Filed: Jan. 10, 2020
- (65) Prior Publication Data

US 2020/0131246 A1 Apr. 30, 2020

Related U.S. Application Data

- (60) Continuation of application No. 16/582,486, filed on Sep. 25. 2019, which is a continuation of application No. 16/159.269, filed on Oct. 12, 2018, now Pat. No. 10,464,992, which is a continuation of application No. 15/879,294, filed on Jan. 24, 2018, now Pat. No. 10,400,025, which is a continuation of application No. 15/095.606, filed on Apr. 11, 2016, now Pat. No. 9.914,763, which is a continuation of application No. 14/330,096, filed on Jul. 14, 2014, now Pat. No. 9.340,594, which is a continuation of application No. 13/914,996. filed on Jun. 11, 2013. now Pat. No. 8.802,107, which is a continuation of application No. 13/329,770. filed on Dec. 19. 2011, now Pat. No. 8,481,046, which is a continuation of application No. 12/833,417, filed on Jul. 9, 2010, now Pat. No. 8.092,803, which is a continuation of application No. 12/560,885. filed on Sep. 16. 2009. now Pat. No. 7,807,164, which is a division of application No. 11/818,463, filed on Jun. 14, 2007, now Pat. No. 7.608,261.
- (60) Provisional application No. 60/814,484, filed on Jun. 16, 2006.

(51) Int. Cl.	
A61K 38/17	(2006.01)
A61K 38/18	(2006.01)
C07K 19/00	(2006.01)
C07K 14/71	(2006.01)
A61K 9/00	(2006.01)
A61K 9/19	(2006.01)
C07K 14/47	(2006.01)

(10) Patent No.: US 11,084,865 B2

(45) Date of Patent: *Aug. 10, 2021

A61M 5/178	(2006.01)
A61K 47/26	(2006.01)
A61K 47/02	(2006.01)
A61K 47/10	(2017.01)

- (58) Field of Classification Search None
 See application file for complete search history.

11 1

References Cited

(56)

U.S. PATENT DOCUMENTS

6,100,071	Λ	8/2000	Davis-Smyth et al.
6,171,586	B1	1/2001	Lam
6,897,294	B2	5/2005	Davis-Smyth et al.
7,052,691	B2	5/2006	Sleeman et al.
7,608,261	B2 †	10/2009	Furfine
8,110,546	B2	2/2012	Dix et al.
9,340,594	B2 *	5/2016	Furfine
9,580,489	B2 *	2/2017	Furfine
10,464,992	B2	11/2019	Furfine et al.
		(Cont	tinued)

(Continued)

FOREIGN PATENT DOCUMENTS

ЛЬ	10273450	10/1998
Л	H11510170	9/1999
	(Cor	itinued)

OTHER PUBLICATIONS

Petition for Inter Partes Review of U.S. Pat. No. 10,464,992, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 59 pgs.

File History of U.S. Pat. No. 10.464.992, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 124 pgs.

Declaration of Dr. Reiner Gentz, as submitted to the USPTO on Jan. 7. 2021, in Inter Partes Review No. IPR2021-00402, 76 pgs.

(Continued)

Primary Examiner --- Christine J Saoud

Assistant Examiner - Jon M Lockard

(74) Attorney, Agent, or Firm—Karl Bozicevic; Bozicevic Field & Francis LLP

(57) ABSTRACT

Ophthalmic formulations of a vascular endothelial growth factor (VEGF)-specific fusion protein antagonist are pro-

factor (VEGF)-specific fusion protein antagonist are provided suitable for intravitreal administration to the eye. The ophthalmic formulations include a stable liquid formulation and a lyophilizable formulation. Preferably, the protein antagonist has an amino acid sequence of SEQ ID NO:4.

64 Claims, No Drawings

Specification includes a Sequence Listing.

(56)**References** Cited

U.S. PATENT DOCUMENTS

2003/0113316 A1	6/2003	Kaisheva et al.
2003/0138417 A1	7/2003	Kaisheva et al.
2004/0197324 AI	10/2004	Liu et al.
2005/0281831 AI	12/2005	Davis-Smyth et al.
2006/0217311 AI	9/2006	Dix et al.
2008/0085276 A1	4/2008	Wiegand et al.
2014/0012227 A1	1/2014	Sigg et al.

FOREIGN PATENT DOCUMENTS

JP	2002516871	6/2002
WO	WO 97/04801	2/1997
WO	WO1998045331	+ 10/1998
WO	WO 99/62536	12/1999
WO	WO2000075319	+ 12/2000
WO	WO 2004/091658	10/2004
WO	WO 2005/000895	1/2005
WO	WO 2005011734	2/2005
WO	WO 2005/020972	3/2005
WO	WO 2006/047325	5/2006
WO	WO 2006/088650	8/2006
WO	WO 2006/104852	10/2006

OTHER PUBLICATIONS

Fraser et al., "Single Injections of Vascular Endothelial Growth Factor Trap Block Ovulation in the Macaque and Produce a Prolonged, Dose-Related Suppression of Ovarian Function." J. Clin. Endocrinol. & Metab., 90(2):1114-1122 (2004).

Wulff et al., "Prevention of Thecal Angiogenesis, Antral Follicular Growth, and Ovulation in the Primate by Treatment with Vascular Endothelial Growth Factor Trap R1R2," Endocrinology, 143(7):2797-2807 (2002).

Certificate of Correction dated Mar. 3, 2020, in U.S. Pat. No.

10,464,992, 1 pg. Holash et al., "VEGF-Trap: A VEGF blacker with potent antitumor effects," PNAS. 99(17):11393-11398 (2002).

Response to Office Action in U.S. Appl. No. 12/835,065, filed Nov. 22, 2011, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 4 pgs. Declaration Pursuant to 37 C.F.R. § 1.131 of Daniel B. Dix. Kelly

Frye, and Susan Kautz in Support of Response to Office Action in U.S. Appl. No. 12/835,065. filed Nov. 22, 2011, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402. II pgs.

Resume of Reiner Gentz, Ph.D., as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402. 3 pgs.

Rudge et al., "VEGF Trap as a Novel Antiangiogenic Treatment Currently in Clinical Trials for Cancer and Lyc Diseases, and VelociGene®-based Discovery of the Next Generation of Angiogenesis Targets," Cold Spring Harbor Symposia on Quantitative Biology. 70:411-418 (2004).

Chi et al., "Physical Stability of Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein Aggregation," Pharmaceutical Research, 20(9):1325-1336 (2003).

Bontempo, "Preformulation Development of Parenteral Biopharmaccuticals." Drugs and the Pharmaceutical Sciences, 85:91-108 (1997).

"Guidance for Industry Q1A(R2) Stability Testing of New Drug Substances and Products." U.S. Department of Health and Human Services, Food and Drug Administration, Rockville, MD, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 25 pgs.

Parkins et al., "The formulation of biopharmaceutical products." Pharmaceutical Science & Technology Today, 3(4):129-137 (2000). Randolph et al., "Surfactant-Protein Interactions," Rational Design of Stable Protein Formulations, pp. 159-175. Springer, Boston, MA (2002).

"Phosphate buffer," Cold Spring Harbor Protocols, 2006:pdb. rec8543, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402. 1 pg.

Lucentis® label, as submitted to the USPTO on Jan. 7, 2021, in Inter-Partes Review No. IPR2021-00402, 14 pgs.

Avastin® label, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 37 pgs.

Remicade® label, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 58 pgs.

Xolair® label, as submitted to the USPTO on Jan. 7. 2021. in Inter Partes Review No. IPR2021-00402, 17 pgs.

Raptiva@ label, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 36 pgs.

Simulect® label, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 7 pgs.

Herceptin® label, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 2 pgs.

Andersen et al., "Recombinant protein expression for therapeutic applications," Current Opinion in Biotechnology, 13:117-123 (2002). Janeway et al., "The structure of a typical antibody molecule." Immunobiology: The Immune System in Health and Disease. 5th edition, New York: Garland Science, 6 pgs. (2001).

Drug Vehicle (Code C927), National Cancer Institute (NCI), retrieved Jan. 6. 2021. from <https://neithesaurus.nei.nih.gov/neitbrowser/ ConceptReport jsp?dictionary=NCI Thesaurus&ns=ncit&code= C927 >, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402, 2 pgs.

Controls in SCI experiments. RegenBase, retrieved Jan. 6, 2021, from <http://regenbase.org/control-groups.html>, as submitted to the USPTO on Jan. 7, 2021, in Inter Partes Review No. IPR2021-00402. 2 pgs.

Fraser, Hamis M., et al., "Single Injections of Vascular Endothelial Growth Factor Trap Block Ovulation in the Macaque and Produced Prolonged, Dose-Related Suppression of Ovarian Function." (2004) J. Clin. Endocrin. & Metabol. 90(2):1114-1122.

Anonymous: "Lucentis in the treatment of neovascular (wet) agerelated macular degeneration (AMD)", Jan. 1, 2007, pp. 1-54.

Ex Parte Request for Reexamination of U.S. Pat. No. 10.464,992, pp. 1-70, published I/eb. 11, 2020.†

USPTO Communication on Ex Parte Reexamination of U.S. Pat. No. 10.464.992, pp. 1-12. published Apr. 1. 2020.⁺

† cited by third party

VEGF ANTAGONIST FORMULATIONS SUITABLE FOR INTRAVITREAL ADMINISTRATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 16/582.486, filed on Sep. 25. 102019, which is a continuation application of U.S. patent application Ser. No. 16/159,269, filed on Oct. 12, 2018, which issued as U.S. Pat. No. 10,464,992 on Nov. 5, 2019, which is a continuation application of U.S. patent application Scr. No. 15/879,294, which issued as U.S. Pat. No. 15 antagonist are provided. Pharmaceutically acceptable for-10,400.025 on Sep. 2, 2013, filed on Jan. 24, 2018. which is a continuation application of U.S. patent application Ser. No. 15/095,606, filed on Apr. 11, 2016, which issued as U.S. Pat. No. 9,914,763 on Mar. 13, 2018, which is a continuation application of U.S. patent application Ser. No. 14/330,096, 20 filed Jul. 14, 2014, which issued as U.S. Pat. No. 9.340.594 on May 17, 2016. which is a continuation of U.S. patent application Ser. No. 13/914.996. filed Jun. 11, 2013, which issued as U.S. Pat. No. 8,802,107 on Aug. 12, 2014, which is a continuation application of U.S. patent application Ser. 25 No. 13/329,770. filed Dec. 19. 2011. which issued as U.S. Pat. No. 8,481.046 on Jul. 9, 2013. which is a continuation application of U.S. patent application Ser. No. 12/833.417. filed Jul. 9, 2010, which issued as U.S. Pat. No. 8,092,803 on Jan. 10, 2012, which is a continuation application of U.S. patent application Ser. No. 12/560,885, filed Sep. 16, 2009, which issued as U.S. Pat. No. 7,807.164 on Oct. 5. 2010. which is a divisional application of U.S. patent application Ser. No. 11/818.463, filed Jun. 14. 2007, which issued as 35 U.S. Pat. No. 7,608,261 on Oct. 27, 2009, which claims the benefit under 35 U.S.C. .§ 119(e) of U.S. Provisional Application No. 60/814,484, filed Jun. 16, 2006, which applications are each hereby incorporated by reference.

BACKGROUND OF INVENTION

Field of the Invention

The present invention is directed to pharmaceutical for- 45 mulations suitable for intravitreal administration comprising agents capable of inhibiting vascular endothelial growth factor (VEGF), and to methods for making and using such formulations. The invention includes liquid pharmaceutical formulations having increased stability, as well as formula- 50 tions that may be lyophilize and reconstituted for intravitreal administration.

Statement of Related Art

Vascular endothelial growth factor (VEGF) expression is nearly ubiquitous in human cancer, consistent with its role as a key mediator of tumor neoangiogenesis. Blockade of VEGF function, by binding to the molecule or its VEGFR-2 receptor, inhibits growth of implanted tumor cells in mul- 60 tiple different xenograft models (see, for example, Gerber et al. (2000) Cancer Res. 60:6253-6258). A soluble VEGFspecific fusion protein antagonist, termed a "VEGF trap" has been described (Kim et al. (2002) Proc. Natl. Acad. Sci. USA 99:11399-404: Holash et al. (2002) Proc. Natl. Acad. 65 Sci. USA 99:11393-8), which applications are specifically incorporated by reference in their entirety.

Ophthalmic formulations are known, see for example, U.S. Pat. Nos. 7.033,604 and 6,777.429. An ophthalmic formulation of a VEGE antibody is described in U.S. Pat. No. 6.676.941.

Lyophilization (freeze drying under controlled conditions) is commonly used for long-term storage of proteins. The lyophilized protein is substantially resistant to degradation, aggregation. oxidation, and other degenerative processes while in the freeze-dried state (see, for example, U.S. Pat. No. 6,436,897).

BRIEF SUMMARY OF THE INVENTION

Stable formulations of a VEGF-specific fusion protein mulations are provided that comprise a VEGE "trap" antagonist with a pharmaceutically acceptable carrier. In specific embodiments, liquid and lyophilized formulations are provided.

In a first aspect, a stable liquid ophthalmic formulation of a VEGF-specific fusion protein antagonist is provided, comprising a fusion protein that comprises a receptor component consisting essentially of an immunoglobulin-like (Ig) domain 2 of a first VEGF receptor and Ig domain 3 of a second VEGF receptor, and a multimerizing component (also termed a "VEGF trap"). In a specific embodiment of the VEGF-specific fusion protein antagonist, the first VEGF receptor is Flt1 and the second VEGF receptor is Flk1 or Flt4. In a more specific embodiment the fusion protein has the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:4. Preferably, the VEGF antagonist is a dimer comprising two fusion proteins of SEQ ID NO:4.

In one aspect, a stable liquid ophthalmic formulation is provided that comprises 1-100 mg/ml VEGF-specific fusion protein antagonist. 0.01-5% of one or more organic cosolvent(s). 30-150 mM of one or more tonicity agent(s), 5-40 mM of a buffering agent, and optionally, 1.0-7.5% of a stabilizing agent, pH between about 5.8-7.0.

In one or more specific embodiments, the organic co-40 solvent may be polysorbate. for example, polysorbate 20 or polysorbate 80. polyethylene glycol (PEG). for example, PEG 3350, or propylene glycol, or a combination thereof; the tonicity agent may be, for example, sodium chloride or potassium chloride; the stabilizing agent may be sucrose, sorbitol, glycerol, trehalose, or mannitol; and the buffering agent may be, for example, phosphate buffer. In a specific embodiment, the phosphate buffer is a sodium phosphate buffer.

In various embodiments, the organic co-solvent is polysorbate and/or PEG, the stabilizing agent is sucrose, the buffering agent is phosphate buffer, and the tonicity agent is sodium chloride.

More specifically, the stable liquid ophthalmic formulation comprises about 40-50 mg/ml of the VEGF antagonist 55 (SEQ ID NO:4), about 10 mM phosphate buffer, 0.01-3% polysorbate and/or PEG, 40-135 mM sodium chloride, and optionally 5.0% sucrose, pH about 6.2-6.3.

In a specific preferred embodiment, the stable liquid ophthalmic formulation comprises about 50 mg/ml of the VEGF antagonist (SEQ ID NO:4), 10 mM sodium phosphate buffer, 50 mM sodium chloride, 0.1% polysorbate, and 5% sucrose, pH about 6.2-6.3.

In a specific preferred embodiment, the stable liquid ophthalmic formulation comprises about 50 mg/ml of the VEGF antagonist (SEQ ID NO:4), 10 mM sodium phosphate buffer, 50 mM sodium chloride, 3% PEG, and 5% sucrose, pH about 6.2-6.3.

In a specific preferred embodiment, the stable liquid ophthalmic formulation comprises about 40 mg/ml of the VEGF antagonist (SEQ ID NO:4), 10 mM sodium phosphate buffer. 40 mM sodium chloride, 0.03% polysorbate. and 5% sucrose, pH about 6.2-6.3.

In a specific preferred embodiment, the stable liquid ophthalmic formulation comprises about 40 mg/ml of the VEGF antagonist (SEQ ID NO:4), 10 mM sodium phosphate buffer, 135 mM sodium chloride, and 0.03% polysorbate, pH about 6.2-6.3.

In another aspect, a stable liquid ophthalmic formulation is provided that comprises 1-100 mg/ml VEGE-specific fusion protein antagonist; 0.01-5% of one or more organic co-solvent(s); 5-40 mM of a buffering agent; and optionally 30-150 mM of one or more tonicity agent(s) and/or 1.0-7.5% 15 of a stabilizing agent: having a pH between about 5.8-7.0.

In various embodiments, the VEGF antagonist (SEQ ID NO:4) is present at a concentration of about 10 to about 80 mg/ml. In various embodiments, the VEGF antagonist (SEQ ID NO:4) is present at a concentration of about 10, about 20. 20 about 30. about 40. about 50. about 60, about 70, or about 80 mg/ml. In a preferred embodiment, the VEGF antagonist (SEQ ID NO:4) is present at a concentration of about 40 mg/ml.

In another embodiment, the stabilizing agent is selected 25 from one or more of sucrose, sorbitol, glycerol, trehalose, and mannitol.

In another embodiment, the organic co-solvent is selected from one or more of polysorbate, for example, polysorbate 20 or polysorbate 80, polyethylene glycol (PEG), for 30 example. PEG 3350, and propylene glycol.

In another embodiment, the buffer is a phosphate buffer. for example, sodium phosphate.

In another embodiment, the tonicity agent is a salt, for example, sodium chloride,

In one embodiment, the stable liquid ophthalmic formulation comprises 10 mM sodium phosphate buffer, about 0.03 to about 0.1% polysorbate and/or about 3% PEG or propylene glycol, about 40 mM sodium chloride, and about 5% sucrose. In a specific embodiment, the stable liquid 40 pH 6.2-6.3. In a specific embodiment, the lyophilizable ophthalmic formulation comprises 10 mM sodium phosphate buffer, about 0.03% polysorbate, about 40 mM sodium chloride, and about 5% sucrose. In another specific embodiment, the pH of the formulation is about 6.2 to about 6.3. In another specific embodiment, the pH is achieved by mixing 45 mono- and dibasic sodium phosphate to the desired pH without acid/base titration.

In a specific embodiment, the stable liquid ophthalmic formulation consists essentially of a VEGF antagonist (SEQ ID NO:4) at 40 mg/ml, 10 mM sodium phosphate buffer. 50 polysorbate at 0.03%, sodium chloride at 40 mM, and sucrose at 5%, pH 6.2-6.3.

In another aspect, a stable liquid ophthalmic formulation is provided that comprises about 10 to about 80 mg/ml VEGF antagonist, about 10 mM sodium phosphate buffer. 55 thalmic formulation comprises 5 mg/ml, 10 mg/ml, or 40 about 0.03% polysorbate, and about 135 mM sodium chloride, pH 6.2 to 6.3.

In various embodiments, the VEGF antagonist (SEQ ID NO:4) is present at a concentration of about 10 to about 80 mg/ml. In various embodiments, the VEGF antagonist (SEQ-60 ID NO:4) is present at a concentration of about 10, about 20, about 30, about 40, about 50, about 60, about 70, or about 80 mg/ml. In a specific embodiment, the VEGF antagonist (SEQ ID NO:4) is present at a concentration of about 40 mg/ml. 65

In one embodiment, the stable liquid ophthalmic formulation comprises 40 mg/ml of VEGF antagonist (SEQ ID 4

NO:4), 10 mM sodium phosphate buffer, 0.03% polysorbate, and 135 mM sodium chloride at pH 6.2-6.3. In a specific embodiment, the stable liquid ophthalmic formulation consists essentially of 40 mg/ml of VEGF antagonist (SEQ ID NO:4), 10 mM sodium phosphate buffer, 0.03% polysorbate, and 135 mM sodium chloride at pH 6.2-6.3.

In another aspect, a lyophilizable formulation of a VEGF antagonist is provided, wherein upon lyophilization followed by reconstitution, a stable liquid ophthalmic formulation as described herein is obtained.

In another aspect, a lyophilizable formulation of a vascular endothelial growth factor (VEGF)-specific fusion protein antagonist is provided, comprising 5-50 mg/ml of the VEGF antagonist, 5-25 mM buffer, such as phosphate buffer, 0.01 to 0.15% of one or more of an organic co-solvent, such as polysorbate, propylene glycol and/or PEG, and optionally 1-10% of a stabilizing agent such as sucrose, sorbitol, trehalose, glycerol, or mannitol, pH about 5.8-7.0. In various embodiments, the VEGF antagonist (SEQ ID NO:4) is present at about 5, about 10, about 20, about 30, or about 40 mg/ml. In a specific embodiment, the lyophilizable ophthalmic formulation of the invention comprises 20 mg/ml of the VEGF antagonist, 10 mM sodium phosphate buffer, 0.03% polysorbate, 0.1% PEG, and 2.5% sucrose, pH about 6.2-6.3. In further embodiments, the lyophilizable formulation further comprises sodium chloride. In a specific embodiment, the sodium chloride is present at a concentration of about 20 mM. In another specific embodiment, the sodium chloride is present at a concentration of about 67.5 mM.

In another specific embodiment, the lyophilizable ophthalmic formulation of the invention comprises 20 mg/ml of the VEGF antagonist, 5 mM sodium phosphate buffer, 0.015% polysorbate, 20 mM sodium chloride, and 2.5% 35 sucrose, pH about 6.2-6.3.

In another embodiment, the lyophilizable ophthalmic formulation comprises 5 mg/ml, 10 mg/ml, or 40 mg/ml VEGF antagonist, 5 mM sodium phosphate buffer, 0.015% polysorbate, 20 mM sodium chloride, and 2.5% sucrose, at ophthalmic formulation consists essentially of 5 mg/ml. 10 mg/ml, or 40 mg/ml VEGF antagonist (SEQ ID NO:4), 5 mM sodium phosphate buffer, 0.015% polysorbate, 20 mM sodium chloride, and 2.5% sucrose, at pH 6.2-6.3.

In another specific embodiment, the lyophilizable ophthalmic formulation comprises 20 mg/ml of the VEGF antagonist, 5 mM sodium phosphate buffer, 0.015% polysorbate, and 67.5 mM sodium chloride, pH about 6.2-6.3. In a more specific embodiment, the lyophilizable ophthalmic formulation consists essentially of 20 mg/ml of the VEGF antagonist (SEQ ID NO:4), 5 mM sodium phosphate buffer, 0.015% polysorbate, and 67.5 mM sodium chloride, pH 6.2-6.3.

In another specific embodiment, the lyophilizable ophmg/ml VEGF antagonist, 5 mM sodium phosphate buffer, 0.015% polysorbate, and 67.5 mM sodium chloride, pH about 6.2-6.3. In a more specific embodiment, the lyophilizable ophthalmic formulation consists essentially of 5 mg/ml, 10 mg/ml, or 40 mg/ml VEGE antagonist (SEQ ID NO:4), 5 mM sodium phosphate buffer, 0.015% polysorbate, and 67.5 mM sodium chloride, pH about 6.2-6.3.

Generally, the reconstituted formulation is about 2 times the concentration of the pre-lyophilized formulation, e.g., a 20 mg fusion protein/ml pre-lyophilized formulation is reconstituted to a final formulation of 40 mg fusion protein/ ml.

Generally, the lyophilized formulation is reconstituted with sterile water suitable for injection. In one embodiment, the reconstitution liquid is bacteriostatic water.

In another aspect, the invention features a method of producing a lyophilized formulation of a VEGF-specific ⁵ fusion protein antagonist, comprising subjecting the lyophilizable formulation of the invention to lyophilization to generate a lyophilized formulation. The lyophilized formulation may be lyophilized by any method known in the art for lyophilizing a liquid.

In another related aspect, the invention features a method of producing a reconstituted lyophilized formulation of a VEGF antagonist, comprising reconstituting the lyophilized formulation of the invention to a reconstituted formulation. ¹⁵ In one embodiment, the reconstituted formulation is twice the concentration of the pre-lyophilized formulation, e.g., the method of the invention comprises: (a) producing a pre-lyophilized formulation of a VEGF-specific fusion protein antagonist, (b) subjecting the pre-lyophilized formulation of step (a) to lyophilization; and (c) reconstituting the lyophilized formulation of step (b).

The invention further features ophthalmic formulations provided in a pre-filled syringe or vial, particularly suitable for intravitreal administration.

Other objects and advantages will become apparent from a review of the ensuing detailed description.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is not limited to particular methods, and experimental conditions described, as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing ³⁵ particular embodiments only, and is not intended to be limiting unless indicated, since the scope of the present invention will be limited only by the appended claims.

Unless stated otherwise, all technical and scientific terms and phrases used herein have the same meaning as com-⁴⁰ monly understood by one of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All 45 publications mentioned herein are incorporated herein by reference.

General Description

Safe handling and administration of formulations comprising proteins represent significant challenges to pharmaceutical formulators. Proteins possess unique chemical and physical properties that present stability problems: a variety of degradation pathways exist for proteins, implicating both 55 chemical and physical instability. Chemical instability includes deamination, aggregation, clipping of the peptide backbone, and oxidation of methionine residues. Physical instability encompasses many phenomena, including, for example, aggregation and/or precipitation. 60

Chemical and physical stability can be promoted by removing water from the protein. Lyophilization (freezedrying under controlled conditions) is commonly used for long-term storage of proteins. The lyophilized protein is substantially resistant to degradation, aggregation, oxida-55 tion, and other degenerative processes while in the freezedried state. The lyophilized protein may be reconstituted

with water optionally containing a bacteriostatic preservative (e.g., benzyl alcohol) prior to administration.

Definitions

The term "carrier" includes a diluent, adjuvant, excipient, or vehicle with which a composition is administered. Carriers can include sterile liquids, such as, for example, water and oils, including oils of petroleum, animal, vegetable or synthetic origin, such as, for example, peanut oil, soybean oil, mineral oil, sesame oil and the like.

The term "excipient" includes a non-therapeutic agent added to a pharmaceutical composition to provide a desired consistency or stabilizing effect. Suitable pharmaceutical excipients include, for example, starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, tale, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.

The term "lyophilized" or "freeze-dried" includes a state of a substance that has been subjected to a drying procedure such as lyophilization, where at least 90% of moisture has been removed.

VEGF Antagonists

A VEGF antagonist is a compound capable of blocking or inhibiting the biological action of vascular endothelial growth factor (VEGF), and includes fusion proteins capable ³⁰ of trapping VEGF. In a preferred embodiment, the VEGF antagonist is the fusion protein of SEQ ID NO:2 or 4: more preferably, SEQ ID NO:4. In specific embodiments, the VEGF antagonist is expressed in a mammalian cell line such as a CHO cell and may be modified post-translationally. In ³⁵ a specific embodiment, the fusion protein comprises amino acids 27-457 of SEQ ID NO:4 and is glycosylated at Asn residues 62, 94, 149, 222 and 308. Preferably, the VEGF antagonist is a dimer composed of two fusion proteins of SEQ ID NO:4.

The VEGF antagonist of the methods and formulations of the invention can be prepared by any suitable method known in the art, or that comes to be known. The VEGF antagonist is preferably substantially free of protein contaminants at the time it is used to prepare the pharmaceutically acceptable formulation. By "substantially free of protein contaminants" is meant, preferably, that at least 90% of the weight of protein of the VEGF-specific fusion protein antagonist preparation used for making a formulation is VEGF fusion protein antagonist protein, more preferably at least 95%, 50 most preferably at least 99%. The fusion protein is preferably substantially free of aggregates. "Substantially free of aggregates" means that at least 90% of the weight of fusion protein is not present in an aggregate at the time the fusion protein is used to prepare the pharmaceutically effective formulation. Unless stated otherwise, the phosphates employed are sodium phosphates and a desired buffering pH is achieved by mixing appropriate amounts of mono- and dibasic sodium phosphate.

Stable Liquid Ophthalmic Formulations

In one aspect, the invention provides a stable pharmaceutically acceptable formulation comprising a VEGF antagonist, wherein the formulation is a liquid formulation suitable for ophthalmic use. Preferably, the liquid formulation comprises a pharmaceutically effective amount of the VEGF antagonist. The formulation can also comprise one or more

pharmaceutically acceptable carriers, buffers, tonicity agents, stabilizers, and/or excipients. An example of a pharmaceutically acceptable liquid formulation comprises a V1/G1/ antagonist in a pharmaceutically effective amount, a buffer, an organic co-solvent such as polysorbate, a tonicity ⁵ agent such as NaCl, and optionally, a stabilizer such as sucrose or trehalose.

Stability is determined in a number of ways at specified time points, including determination of pH, visual inspection of color and appearance, determination of total protein ¹⁰ content by methods known in the art, e.g., UV spectroscopy, and purity is determined by, for example, SDS-PAGE, size-exclusion HPLC, bioassay determination of activity, isoelectric focusing, and isoaspartate quantification. In one example of a bioassay useful for determining VEGF antagonist activity, a BAF/3 VEGFR1/EPOR cell line is used to determine VEGF165 binding by the VEGF antagonist of the invention.

Liquid formulations can be stored in an oxygen-deprived ₂₀ environment. Oxygen-deprived environments can be generated by storing the formulations under an inert gas such as. for example, nitrogen or argon. Liquid formulations are preferably stored at about 5° C.

Ophthalmic Lyophilized Formulations

In one aspect of the invention, an ophthalmically acceptable formulation comprising a VEGF antagonist is provided, wherein the formulation is a lyophilizable formulation. ³⁰ Lyophilizable formulations can be reconstituted into solutions, suspensions, emulsions, or any other suitable form for administration or use. Lyophilizable formulations are typically first prepared as liquids, then frozen and lyophilized. The total liquid volume before lyophilization can be less, equal to, or more than, the final reconstituted volume of the lyophilized formulation. The lyophilization process is well known to those of ordinary skill in the art, and typically includes sublimation of water from a frozen formulation 40 under controlled conditions.

Lyophilized formulations can be stored at a wide range of temperatures. Lyophilized formulations may be stored below 25° C., for example, refrigerated at 2-8° C., or at room temperature (e.g., approximately 25° C.). Preferably, lyo-45 philized formulations are stored below about 25° C., more preferably, at about 4-20° C.; below about 25° C., or about -80° C. Stability of the lyophilized formulation may be determined in a number of ways known to the art. for example, 50 by visual appearance of the cake and/or by moisture content.

Lyophilized formulations are typically reconstituted for use by addition of an aqueous solution to dissolve the lyophilized formulation. A wide variety of aqueous solutions can be used to reconstitute a lyophilized formulation. Pref-55 erably, lyophilized formulations are reconstituted using water. Lyophilized formulations are preferably reconstituted with a solution consisting essentially of water (e.g., USP WI/I. or water for injection) or bacteriostatic water (e.g., USP WI/I with 0.9% benzyl alcohol). However, solutions 60 comprising buffers and/or excipients and/or one or more pharmaceutically acceptable carries can also be used.

Freeze-dried or lyophilized formulations are typically prepared from liquids, that is, from solutions, suspensions, emulsions, and the like. Thus, the liquid that is to undergo 65 freeze-drying or lyophilization preferably comprises all components desired in a final reconstituted liquid formula-

tion. As a result, when reconstituted, the freeze-dried or lyophilized formulation will render a desired liquid formulation upon reconstitution.

EXAMPLES

Before the present methods are described, it is to be understood that this invention is not limited to particular methods, and experimental conditions described. as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only to the appended claims.

As used in this specification and the appended claims, the singular forms "a", "an", and "the" include plural references unless the context clearly dictates otherwise. Thus for example, a reference to "a method" includes one or more methods, and/or steps of the type described herein and/or which will become apparent to those persons skilled in the art upon reading this disclosure and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference in their entirety.

Example 1. Stability of 50 mg/ml VEGF Trap Liquid Formulation Stored at 5° C. in 3 ml Glass Vials

An ophthalmic liquid formulation containing 50 mg/ml VEGF Trap (SEQ ID NO:4). 10 mM phosphate, 50 mM NaCl, 0.1% polysorbate 20. 5% sucrose, and pH 6.25, was stored at 5° C. in 3 ml glass vials and samples tested at 3, 6, 9, 12, 18 and 24 months. Stability was determined by SE-HPLC The results are shown in Table 1. Turbidity was measured at OD_{405} nm: and percent recovered protein and purity by size exclusion HPLC.

TABLE 1

Months	Visual Appearance	Turbidity (OD ₄₀₅ 1111)	pП	% VEGF Trap Recovered	% VI(GI) Trap Native Configuration
0	Pass	0.00	6.2	100	98.8
3	Pass	0.00	6.2	101	98.7
6	Pass	0.01	6.3	100	98.3
9	Pass	0.01	6.3	101	98.3
12	Pass	0.01	6.3	104	98.4
18	Pass	0.01	6.3	96	98.1
24	Pass	0.01	6.3	105	98.1

Example 2. Stability of 50 mg/ml VEGF Trap Liquid Formulation Stored at 5° C. in 3 ml Glass Vials

A liquid formulation containing 50 mg/ml VEGF Trap (SEQ ID NO:4). 10 mM phosphate. 50 mM NaC1, 3% polyethylene glycol 3350, 5% sucrose, and pH 6.25, was stored at 5° C. in 3 nil glass vials and samples tested at 3, 6,

9, 12, 18 and 24 months. Stability results are shown in Table 2. Turbidity, percent recovered protein and purity was determined as described above.

TABLE 2

Sta	Stability of 50 mg/ml VEGE Trap Protein (VGE1-SS065)					
Months	Visual Appearance	Turbidity	pII	% VEGF Trap Recovered	% VI(GI) Trap Native Configuration	1
0	Pass	0.00	6.2	100	98.9	
3	Pass	0.00	6.1	104	98.5	
6	Pass	0.01	6.3	99	98.3	
9	Pass	0.00	6.3	102	97.6	
12	Pass	0.01	6.3	103	98.0	1
18	Pass	0.00	6.3	113	97.7	1
24	Pass	0.00	6.2	106	97.6	

Example 3. Stability of 40 mg/ml VEGF Trap Liquid Formulation Stored at 5° C, in 3 ml Glass Vials

A liquid formulation containing 40 mg/ml VEGF Trap (SEQ ID NO:4), 10 mM phosphate. 40 mM NaCl, $0.03\%_{-25}$ polysorbate 20, 5% sucrose, and pH 6.3. was stored at 5° C. in 3 ml glass vials and samples tested at 0.5, 1, 2, 3, and 4 months. Stability results are shown in Table 3. Turbidity, percent recovered protein and purity was determined as described above. 30

TABLE 3

Months	Visual Appearance	Turbidity	рН	% VEGF Trap Recovered	% VEGF Trap Native Configuration	3
0	Pass	0.00	6.3	100	99.5	
0.5	Pass	0.00	6.3	99	99.4	
1	Pass	0.00	6.2	98	99.5	4
2	Pass	0.00	6.2	95	99.2	
3	Pass	0.01	6.4			
4	Pass	0.01	6.3			

Example 4. Stability of 40 mg/ml VEGF Trap Liquid Formulation Stored at 5° C. in Pre-Filled Glass Syringe

A liquid formulation containing 40 mg/ml VEGF trap $_{50}$ (SEQ ID NO:4), 10 mM phosphate, 40 mM NaCl, 0.03% polysorbate 20, 5% sucrose, and pH 6.3, was stored at 5° C. in 1 ml prefilled luer glass syringe with 4023/50 FluroTec coated plunger and samples tested at 0.5, 1, 2, 3, and 4 months. Stability results are shown in Table 4. Turbidity. $_{55}$ percent recovered protein and purity was determined as described above.

TABLE 4

Sta	Stability of 40 mg/ml VEGF Trap Protein (VGFT-SS207)					
Months	Visual Appearance	Turbidity	рН	% VEGF Trap Recovered	% VEGF Trap Native Configuration	
0 0.5	Pass Pass	0.00 0.00	6.3 6.3	100 100	99.4 99.3	6

10 TABLE 4-continued

	12	ABLE 4-0	эцац	lied	
S12	ability of 40 mg	/ml VEGF Ti	ар Рк	otein (VGFT-8	\$\$207)
Months	Visual Appearance	Turbidity	pII	% V1(G1) Trap Recovered	% VEGF Trap Native Configuration
l	Pass	0.00	6.3	100	99.4
2	Pass	0.00	6.3	97	99.1
3	Pass	0.01	6.4		
4	Pass	0.01	6.3		

Example 5. Stability of 40 mg/ml VEGF Trap Liquid Formulation Stored at 5° C. in 3 ml Glass Vials

A liquid formulation containing 40 mg/ml VEGF trap (SEQ ID NO:4), 10 mM phosphate, 135 mM NaCl, 0.03% 20 polysorbate 20, and pH 6.3, was stored at 5° C. in 3 ml glass vials and samples tested at 0.5. 1, 2, 3. and 4 months. Stability results are shown in Table 5. Turbidity, percent recovered protein and purity was determined as described above.

TABLE 5

Months	Visual Appearance	Turbidity	pН	% VEGF Trap Recovered	% VEGF Trap Native Configuration
0	Pass	0,00	6.3	100	99.3
0.5	Pass	0.00	6.2	87	99.2
1	Pass	0.00	6.2	88	99.1
2	Pass	0,00	6.3	103	99.2
3	Pass	0.00	6.3	88	99.0
4	Pass	0.00	6.2	85	98.9
5	Pass	0.00	6.3	84	99.0

Example 6. Stability of 40 mg/ml VEGF Trap Liquid Formulation Stored at 5° C. in 1 ml Pre-Filled Glass Syringe

 A liquid formulation containing 40 mg/ml VEGE trap (SEQ ID NO:4). 10 mM phosphate. 135 mM NaCl. 0.03% polysorbate 20, and pH 6.3, was stored at 5° C. in 1 ml prefilled glass luer syringe with 4023/50 FluroTec coated plunger and samples tested at 0.5. 1, 2, 3, 4, and 5 months.
 Stability results are shown in Table 6. Turbidity, percent recovered protein and purity was determined as described above.

TABLE 6

ned as	55	Sta	bility of 40 mg	ml VEGF Tr	ap Pro	tein (VGFT-S	(\$203)
		Months	Visual Appearance	Turbidity	pН	% VEGF Trap Recovered	% VEGF Trap Native Configuration
	60	0	Pass	0,00	6.3	100	99.2
		0.5	Pass	0.01	6.3	101	99.2
/EGF		L	Pass	0.00	6.3	101	99.2
Native		2	Pass	0.00	6.3	_	_
guration		3	Pass	0.01	6.3	102	99.1
		4	Pass	0.01	6.3	103	98.8
9.4 03	65	5	Pass	0.00	6.3	99	98.9

-

Example 7. Stability of Lyophilized 20 mg/ml VEGF Trap Formulation Stored at 5° C. in 3 ml Glass Vials and Reconstituted to 40 mg/ml

0.8 ml of a liquid formulation containing 20 mg/ml VEGF 5 trap (SEQ ID NO:4), 5 mM phosphate, 20 mM NaCl, 0.015% polysorbate 20. 2.5% sucrose, and pH 6.3, were lyophilized in 3 ml glass vials. Samples were stored at 5° C. and tested at 1, and 2 months. VEGF trap was reconstituted to a final concentration of 40 mg/ml VEGF Trap (final 10 volume of 0.4 ml). Stability results are shown in Table 7 (t=time in months: *=visual appearance: **=reconstitution time). Turbidity. percent recovered protein and purity was determined as described above.

12

Example 8. Stability of Lyophilized 20 mg/ml VEGF Trap Formulation Stored at 5° C, in 3 ml Glass Vials

0.8 ml of a liquid formulation containing 20 mg/ml VEGF trap (SEQ II) NO:4). 5 mM phosphate, 67.5 mM NaCl, 0.015% polysorbate 20, and pH 6.3, were lyophilized in 3 ml glass vials. Samples were stored at 5° C. and tested at 1, 2, and 3 months. VEGF trap was reconstituted to a final concentration of 40 mg/ml VEGF trap (final volume of 0.4 ml). Stability results are shown in Table 8 (t=time in months; * visual appearance; ** reconstitution time).

TABLE	8
-------	---

_				TABI	.E 7			_		u bilin a	vî Evanshi	lized 20 mg	(ml VI)		ran Protein (VGFT-88216)
_	Stabilit	y of Lyop	hilized 20 n	ng/ml V	ΈGF	Trap Protein	(VGFT-\$\$216)	-			Recon.	Vis. App.			% VEGF	% V1/G1/
1.	Vis. App.*	Recon. Time** (min)	Vis. App.* Reconst'd Liquid	Tur- bidity	pН	% VEGF Trap Recovered	% VEGF Trap Native Config.	20	t	Vis. App.*	Time** (min)	Reconst 'd Liquid		рП	Ттар	Trap Native Config.
0 1 2	Pass	0.6 0.6 0.4	Pass Pass Pass	0.00 0.01 0.01	6.3 6.3 6.2	100 106 103	99.5 99.4 99.3	•	0 1 2	Pass Pass Pass	0.7 0.7 0.4	Pass Pass Pass	0.00 0.01 0.01	6.3 6.2 6.2	100 105 103	99.0 98.9 98.9

15

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 4

<210> SEQ ID NO 1 <211> LENGTH: 1453 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic

<400> SEQUENCE: 1

aagettggge	tgcaggtoga	tegaetetag	aggategate	cccgggcgag	ctcgaattcg	60
caaccaccat	ggtcagctac	tgggacaccg	gggteetget	gtgegegetg	ctcagetgte	120
tgetteteac	aggatetagt	teeggaggta	gacetttegt	agagatgtac	agtgaaatco	180
ccgaaattat	acacatgact	gaaggaaggg	agetegteat	teectgecgg	gttacgtcac	240
ctaacatcac	tgttacttta	aaaaagtttc	cacttgacac	tttgatecet	gatggaaaac	300
gcataatetg	ggacagtaga	aagggettea	tcatatcaaa	tgcaacgtac	aaagaaatag	360
ggettetgae	ctgtgaagca	acagtcaatg	ggcatttgta	taagacaaac	tateteacae	420
atogacaaac	caatacaatc	atagatgtgg	ttetgagtee	gtctcatgga	attgaactat	480
ctgttggaga	aaagettgte	ttaaattgta	cagcaagaac	tgaactaaat	gtggggattg	540
acttcaactg	ggaataccct	tettegaage	atcagcataa	gaaacttgta	aaccgagacc	600
taaaaaccca	gtetgggagt	gagatgaaga	aatttttgag	caccttaact	atagatggtg	660
taacccggag	tgaccaagga	ttgtacacct	gtgcagcatc	cagtgggctg	atgaccaaga	720
agaacagcac	atttgtcagg	gtccatgaaa	agggcccggg	cgacaaaact	cacacatgcc	780
caccgtgccc	agcacctgaa	ctectggggg	gacegteagt	ettectette	cccccaaaac	840
ccaaggacac	cetcatgate	teecggacee	ctgaggtcac	atgcgtggtg	gtggacgtga	900
gecaegaaga	ccctgaggtc	aagttcaact	ggtacgtgga	cggcgtggag	gtgcataatg	960
ccaagacaaa	gccgcgggag	gagcagtaca	acagcacgta	cogtgtggto	agogtootca	1020

US 11,084,865 B2

13

cogtootgoa coaggaotgg otgaatggoa aggagtacaa gtgoaaggto tooaacaaag

-continued

costessage cossategag aaaaccatet ceaaagssaa agggeagsee egagaassae	1140
aggtgtacac ootgoccooa tooogggatg agetgaccaa gaaccaggto ageetgacot	1200
gootggtoaa aggottotat oocagogaca togoogtgga gtgggagago aatggggoago	1260
oggagaacaa ctacaagace acgecteeog tgetggaete ogaeggetee ttetteetet	1320
atagcaaget cacegtggac aagagcaggt ggcagcaggg gaaegtette teatgeteeg	1380
tgatgcatga ggetetgeac aaccaetaca egeagaagag eeteteeetg teteegggta	1440
aatgagegge ege	1453
<210> SEQ ID NO 2 <211> LENGTH: 458 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 2	
Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser 1 5 10 15	
Cys Leu Leu Thr Gly Ser Ser Ser Gly Gly Arg Pro Phe Val Glu 20 25 30	
Met Tyr Ser Glu Ile Pro Glu Ile Ile His Met Thr Glu Gly Arg Glu	
35 40 45	
Leu Val Ile Pro Cys Arg Val Thr Ser Pro Asn Ile Thr Val Thr Leu 50 55 60	
Lys Lys Phe Pro Leu Asp Thr Leu Ile Pro Asp Gly Lys Arg Ile Ile 65 70 75 80	
Trp Asp Ser Arg Lys Gly Phe Ile Ile Ser Asn Ala Thr Tyr Lys Glu 85 90 95	
Ile Gly Leu Leu Thr Cys Glu Ala Thr Val Asn Gly His Leu Tyr Lys 100 105 110	
Thr Asn Tyr Leu Thr His Arg Gln Thr Asn Thr Ile Ile Asp Val Val 115 120 125	
Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu Lys Leu Val	
130 135 140	
Leu Aon Cyo Thr Ala Arg Thr Glu Leu Aon Val Gly Ile Aop Phe Aon 145 150 155 160	
Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu Val Asn Arg 165 170 175	
Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe Leu Ser Thr 180 185 190	
Leu Thr Ile Asp Gly Val Thr Arg Ser Asp Gln Gly Leu Tyr Thr Cys	
195 200 205	
Ala Ala Ser Ser Gly Leu Met Thr Lys Lys Asn Ser Thr Phe Val Arg 210 215 220	
Val His Glu Lys Gly Pro Gly Asp Lys Thr His Thr Cys Pro Pro Cys 225 230 235 240	
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 245 250 255	
Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 260 265 270	
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp	
275 280 285	

1080

-continued

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 290 295 3.00 Glu Gln Tyr Aon Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 3.05 310 315 320 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 325 330 335 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 340 345 350 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 355 360 365 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 370 375 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 385 390 395 400 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 410 405 415 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 425 420 430 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 435 440 445 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 455 450 <210> SEQ ID NO 3 <211> LENGTH: 1377 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEQUENCE: 3 atggteaget actggggacae eggggteetg etgtgegege tgeteagetg tetgettete 60 acaggateta gtteeggaag tgataceggt agaeettteg tagagatgta cagtgaaate 120 ccegaaatta tacacatgae tgaaggaagg gagetegtea tteeetgeeg ggttaegtea 180 ootaacatca otgitacitt aaaaaagitt ooacitgaca otitgatooo igaiggaaaa 240 egeataatet gggacagtag aaagggette ateatateaa atgeaaegta caaagaaata 300 gggettetga eetgtgaage aacagteaat gggeatttgt ataagacaaa etateteaca 360 categacaaa ecaatacaat catagatgtg gttetgagte egteteatgg aattgaacta 420 tetgttggag aaaagettgt ettaaattgt acageaagaa etgaactaaa tgtggggatt 480 gactteaact gggaatacce ttettogaag cateageata agaaacttgt aaacegagac 540 ctaaaaaccc aqtetqqqaq tqaqatqaaq aaatttttqa qcacettaac tataqatqqt 600 gtaaccegga gtgaccaagg attgtacace tgtgcageat ceagtggget gatgaccaag 660 aagaacagca catttgtcag ggtccatgaa aaggacaaaa ctcacacatg cccaccgtgc 720 ccagcadetg aadteetggg gggacegtea gtetteetet teedeecaaa acceaaggae 780 acceteatga teteceggae ceetgaggte acatgegtgg tggtggaegt gagecaegaa 84.0 gaccotgagg toaagttoaa otggtacgtg gacggogtgg aggtgoataa tgocaagaca 900 960 aageegeggg aggageagta caacageaeg taccgtgtgg teagegteet caccgteetg caccaggact ggotgaatgg caaggagtac aagtgcaagg totocaacaa agoootooca 1020 1080 geccecated adaaaaceat etecaaadee aaagggeage eeegadaace acaggtgtae

												0011		aoa			
acco	tgeo	cc (cate	ceggi	ga to	gaget	tgaco	z aaç	gaaco	agg	tca	geet	gac (ctge	stggts	13	140
aaag	gett	ct a	atee	cage	ya ca	atoge	ccgt	g gaq	gtggg	gaga	gcaa	atggg	gca (acaé	yagaac	12	200
aact	acaa	iga (cace	geet	cc cé	ytget	tgga	te	gace	gget	ccti	tett	ect (ctaca	agcaag	1:	260
ctca	icegt	:gg a	acaaq	gagea	ag gt	ggea	agcaç	J 999	jaaco	gtot	toto	zatgi	tc «	ogtga	atgcat	13	320
gago	ett	:ge a	acaa	ccact	a ca	acgea	agaaq	g ago	cetet	cece	tgt	tcc	999 [†]	taaat	:ga	13	377
<211 <212 <213 <220	.> LH :> TY :> OH :> FH	ENGTH (PE : RGAN1 EATUH	ESM: RE:	58 Art:			-										
				ORMA:	LION	. syı	nthe	10									
		-	ACE :														
Met 1	Val	Ser	Tyr	Trp 5	Aap	Thr	Gly	Val	Leu 10	Leu	САа	Ala	Leu	Leu 15	Ser		
Сүя	Leu	Leu	Leu 20	Thr	Gly	Ser	Ser	Ser 25	Gly	Ser	Asp	Thr	Gly 30	Arg	Pro		
Phe	Val	Glu 35	Met	Tyr	Ser	Glu	Ile 40	Pro	Glu	Ile	Ile	His 45	Met	Thr	Glu		
Gly	Arg 50	Glu	Leu	Val	Ile	Pro 55	Суз	Arg	Val	Thr	Ser 60	Pro	Asn	Ile	Thr		
Val 65	Thr	Leu	Lys	Lys	Phe 70	Pro	Leu	Asp	Thr	Leu 75	Ile	Pro	Asp	Gly	Lys 80		
Arg	Ile	Ile	Trp	Asp 85	Ser	Arg	Lys	Gly	Phe 90	Ile	Ile	Ser	Asn	Ala 95	Thr		
Tyr	Lys	Glu	Ile 100	Gly	Leu	Leu	Thr	Cys 105	Glu	Ala	Thr	Val	Asn 110	Gly	His		
Leu	Tyr	Lys 115	Thr	Asn	Tyr	Leu	Thr 120	His	Arg	Gln	Thr	Asn 125	Thr	Ile	Ile		
Asp	Val 130	Val	Leu	Ser	Pro	Ser 135	His	Gly	Ile	Glu	Leu 140	Ser	Val	Gly	Glu		
Lys 145	Leu	Val	Leu	Asn	Cys 150	Thr	Ala	Arg	Thr	Glu 155	Leu	Asn	Val	Gly	Ile 160		
Asp	Phe	Asn	Trp	Glu 165	Tyr	Pro	Ser	Ser	Lys 170	His	Gln	His	Lya	Lys 175	Leu		
Val	Asn	Arg	Asp 180	Leu	Lys	Thr	Gln	Ser 185	Gly	Ser	Glu	Met	Lys 190	Lya	Phe		
Leu	Ser	Thr 195	Leu	Thr	Ile	Asp	G1y 200	Val	Thr	Arg	Ser	Asp 205	Gln	Gly	Leu		
Tyr	Thr 210	Сув	Ala	Ala	Ser	Ser 215	Gly	Leu	Met	Thr	Lys 220	Lys	Asn	Ser	Thr		
Phe 225	Val	Arg	Val	His	Glu 230	Lys	Asp	Lys	Thr	His 235	Thr	Суз	Pro	Pro	Сув 240		
Pro	Ala	Pro	Glu	Leu 245	Leu	Gly	Gly	Pro	Ser 250	Val	Phe	Leu	Phe	Pro 255	Pro		
Lys	Pro	Lys	Asp 260	Thr	Leu	Met	Ile	Ser 265	Arg	Thr	Pro	Glu	Val 270	Thr	Cys		
Val	Val	Val 275	Asp	Val	Ser	His	Glu 280	Asp	Pro	Glu	Val	Lys 285	Phe	Asn	Trp		
Tyr	Val 290		Gly	Val	Glu	Val 295		Asn	Ala	Lys	Thr 300		Pro	Arg	Glu		
Glu		Tyr	Asn	Ser	Thr		Arg	Val	Val	Ser		Leu	Thr	Val	Leu		

-19

				310					315					320
Gln	Aab	Trp	Leu 325	Asn	Gly	Lys	Glu	Tyr 330	Lya	Сүз	ГЛа	Val	Ser 335	Asn
Ala	Leu	Pro 340	Ala	Pro	Ile	Glu	Lys 345	Thr	Ile	Ser	Гла	Ala 350	Гла	Gly
Pro	Arg 355	Glu	Pro	Gln	Val	Tyr 360	Thr	Leu	Pro	Pro	Ser 365	Arg	Aap	Glu
Thr 370	Lys	Asn	Gln	Val	Ser 375	Leu	Thr	Суз	Leu	Val 380	Lys	Gly	Phe	Tyr
Ser	Asp	Ile	Ala	Val 390	Glu	Trp	Glu	Ser	Asn 395	Gly	Gln	Pro	Glu	Asn 400
Tyr	Lys	Thr	Thr 405	Pro	Pro	Val	Leu	Asp 410	Ser	Asp	Gly	Ser	Phe 415	Phe
Tyr	Ser	Lys 420	Leu	Thr	Val	Asp	Lys 425	Ser	Arg	Trp	Gln	Gln 430	Gly	Asn

Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 435 440 445

Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 450 455

We claim:

305 His (

Lys

Gln

Leu

Pro 385 Asn

Leu

1. A vial comprising an ophthalmic formulation suitable for intravitreal administration that comprises: 30

a vascular endothelial growth factor (VEGF) antagonist an organic co-solvent.

a buffer, and

a stabilizing agent,

- wherein said VEGF antagonist fusion protein is glycosy-³⁵ lated and comprises amino acids 27-457 of SEQ ID NO:4: and
- wherein at least 98% of the VEGE antagonist is present in native conformation following storage at 5° C, for two months as measured by size exclusion chromatography.⁴⁰

2. The vial of claim **1**, wherein the concentration of said VEGF antagonist fusion protein is 40 mg/ml, and wherein said organic co-solvent comprises polysorbate.

3. The vial of claim 2, wherein said organic co-solvent $_{45}$ comprises 0.01% to 3% polysorbate.

4. The vial of claim 2, wherein said organic co-solvent comprises about 0.03% to about 0.1% polysorbate 20.

5. The vial of claim 2, wherein said organic co-solvent comprises 0.01% to 3% polysorbate 20.

6. The vial of claim 5, wherein said buffer comprises a phosphate buffer.

7. The vial of claim 5, wherein said buffer comprises 5-25 mM buffer.

8. The vial of claim **5**, wherein said buffer comprises a pH 55 between about 5.8-7.0.

9. The vial of claim 5, wherein said buffer comprises a pH about 6.2-6.3.

10. The vial of claim 5, wherein said stabilizing agent comprises a sugar.

11. The vial of claim 10, wherein said sugar is selected from the group consisting of sucrose, sorbitol, glycerol, trehalose, and mannitol.

12. The vial of claim 5, wherein said stabilizing agent comprises 1.0-7.5% of sucrose.

65

13. The vial of claim 5, wherein said formulation further comprises a tonicity agent.

14. The vial of claim 5, wherein said VEGF antagonist fusion protein is glycosylated at asparagine residues corresponding to asparagine residues 62, 94, 149, 222 and 308 of SEQ ID NO: 4.

15. The vial of claim 5, wherein said formulation is capable of providing a turbidity of 0.01 or lower at OD_{405} after 2 month storage at 5° C.

16. The vial of claim 5, wherein at least 99% of said VEGF antagonist fusion protein is present in native conformation after 2 month storage at 5° C. as measured by size exclusion chromatography.

17. The vial of claim 5, wherein at least 98% of said VEGF antagonist fusion protein is present in native conformation following storage at 5° C. for 24 months as measured by size exclusion chromatography.

18. The vial of claim 5, wherein said formulation does not contain phosphate.

19. The vial of claim **5**, wherein said formulation does not contain trehalose.

20. The vial of claim 5, wherein said stabilizing agent comprises 1.0-10% of sucrose.

21. The vial of claim **20**, wherein said formulation further 50 comprises a tonicity agent.

22. The vial of claim **20**, wherein said VEGF antagonist fusion protein is glycosylated at asparagine residues corresponding to asparagine residues 62, 94, 149, 222 and 308 of SEQ ID NO: 4.

23. The vial of claim 20, wherein said formulation is capable of providing a turbidity of 0.01 or lower at OD_{405} after 2 month storage at 5° C.

24. The vial of claim 20, wherein at least 99% of said VEGF antagonist fusion protein is present in native conformation after 2 month storage at 5° C, as measured by size exclusion chromatography.

25. The vial of claim **20**, wherein at least 98% of said VEGF antagonist fusion protein is present in native conformation following storage at 5° C. for 24 months as measured by size exclusion chromatography.

26. A pre-filled syringe comprising an ophthalmic formulation suitable for intravitreal administration comprising:

20

a vascular endothelial growth factor (VEGF) antagonist fusion protein.

an organic co-solvent.

a buffer, and

a stabilizing agent;

- wherein said VEGF antagonist fusion protein is glycosylated and comprises amino acids 27-457 of SEQ ID NO:4: and
- wherein at least 98% of said VEGF antagonist fusion protein is present in native conformation following 10 storage at 5° C. for two months as measured by size exclusion chromatography.

27. The pre-filled syringe of claim 26, wherein the concentration of said VEGF antagonist fusion protein is 40 mg/ml, and wherein said organic co-solvent comprises poly- 15 sorbate.

28. The pre-filled syringe of claim **27**, wherein said organic co-solvent comprises 0.01% to 3% polysorbate.

29. The pre-filled syringe of claim 27, wherein said organic co-solvent comprises about 0.03% to about 0.1% 20 polysorbate 20.

30. The pro-filled syringe of claim **27**, wherein said organic co-solvent comprises 0.01% to 3% polysorbate 20.

31. The pre-filled syringe of claim **30**, wherein said buffer comprises a phosphate buffer. 25

32. The pre-filled syringe of claim **30**, wherein said buffer comprises 5-25 mM buffer.

33. The pre-filled syringe of claim **30**, wherein said buffer comprises a pH between about 5.8-7.0.

34. The pre-filled syringe of claim **30**, wherein said buffer 30 comprises a pH about 6.2-6.3.

35. The pre-filled syringe of claim 30, wherein said stabilizing agent comprises a supar.

36. The pre-filled syringe of claim **35**, wherein said sugar is selected from the group consisting of sucrose, sorbitol. **35** glycerol. trehalose, and mannitol.

37. The pre-filled syringe of claim 30, wherein said stabilizing agent comprises 1.0-7.5% of sucrose.

38. The pre-filled syringe of claim **30**, wherein said formulation further comprises a tonicity agent.

39. The pre-filled syringe of claim **30**, wherein said ∇EGH antagonist fusion protein is glycosylated at asparagine residues corresponding to asparagine residues 62, 94, 149, 222 and 308 of SEQ ID NO: 4.

40. The pre-filled syringe of claim 30, wherein said 45 formulation is capable of providing a turbidity of 0.01 or lower at OD_{405} after 2 month storage at 5° C.

41. The pre-filled syringe of claim **30**, wherein at least 99% of said VEGF antagonist fusion protein is present in native conformation after 2 month storage at 5° C. as 50 measured by size exclusion chromatography.

42. The pre-filled syringe of claim 30, wherein at least 98% of said VEGF antagonist fusion protein is present in native conformation following storage at 5° C. for 24 months as measured by size exclusion chromatography. 55

43. The pre-filled syringe of claim **30**, wherein said formulation does not contain phosphate.

44. The pre-filled syringe of claim 30, wherein said formulation does not contain trehalose.

45. The pre-filled syringe of claim **30**, wherein said 60 stabilizing agent comprises 1.0-10% of sucrose.

46. The pre-filled syringe of claim **45**, wherein said formulation further comprises a tonicity agent.

47. The pre-filled syringe of claim **45**, wherein said VEGF antagonist fusion protein is glycosylated at asparagine residues corresponding to asparagine residues 62, 94, 149, 222 and 308 of SEQ ID NO: 4.

48. The pre-filled syringe of claim **45**, wherein said formulation is capable of providing a turbidity of 0.01 or lower at OD_{405} after 2 month storage at 5° C.

49. The pre-filled syringe of claim **45**, wherein at least 99% of said VEGF antagonist fusion protein is present in native conformation after 2 month storage at 5° C. as measured by size exclusion chromatography.

50. The pre-filled syringe of claim 45, wherein at least 98% of said VEGE antagonist fusion protein is present in native conformation following storage at 5° C. for 24 months as measured by size exclusion chromatography.

51. An ophthalmic formulation comprising:

- (a) 40 mg/ml of a glycosylated VEGF antagonist fusion protein comprising amino acids 27-457 of SEQ ID NO:4;
- (b) 0.03% to 0.1% polysorbate;
- (c) 5-40 mM of sodium phosphate buffer. pH between 5.8-7.0: and

(d) sucrose;

40

wherein the ophthalmic formulation is suitable for intravitreal administration; and

wherein at least 98% of the VEGF antagonist is present in native conformation following storage at 5° C. for 2 months as measured by size exclusion chromatography.

52. The formulation of claim **51**, wherein said formulation comprises at least 5% sucrose.

53. The formulation of claim **51**, wherein said formulation comprises 1-10% sucrose.

54. A pre-filled syringe suitable for intravitreal administration comprising the formulation of claim **51**.

55. A vial suitable for intravitreal administration comprising the formulation of claim **51**.

56. The formulation of claim 51. wherein said formulation comprises 10 mM sodium phosphate buffer, 0.03% polysorbate, 5% sucrose, and a pH between 6.2-6.3.

57. A pre-filled syringe suitable for intravitreal administration comprising the formulation of claim **56**.

58. A vial suitable for intravitreal administration comprising the formulation of claim **56**.

59. The formulation of claim **56**, wherein said formulation further comprises 40 mM NaCL

60. A pre-filled syringe suitable for intravitreal administration comprising the formulation of claim **59**.

61. A vial suitable for intravitreal administration comprising the formulation of claim **59**.

62. The formulation of claim **59.** wherein said VEGF antagonist fusion protein is glycosylated at asparagine residues corresponding to asparagine residues 62, 94, 149, 222 and 308 of SEQ ID NO: 4.

63. A pre-filled syringe suitable for intravitreal administration comprising the formulation of claim **62**.

64. A vial suitable for intravitreal administration comprising the formulation of claim **62**.

* * * * *